2023
Everglades virus: an underrecognized disease-causing subtype of Venezuelan equine encephalitis virus endemic to Florida, USA
Burkett-Cadena N, Fish D, Weaver S, Vittor A. Everglades virus: an underrecognized disease-causing subtype of Venezuelan equine encephalitis virus endemic to Florida, USA. Journal Of Medical Entomology 2023, 60: 1149-1164. PMID: 37862065, PMCID: PMC10645373, DOI: 10.1093/jme/tjad070.Peer-Reviewed Original ResearchConceptsEverglades virusEncephalitis virusCases of meningitisCotton rat Sigmodon hispidusHigh natural infection rateEpidemic strainsNatural infection rateInfection rateWidespread transmissionAbundance of AedesNatural infectionSubtype IISubtypesFrequent feedingFrequency of contactCertain mosquitoesVector competenceVirusHuman diseasesRodentsVertebrate hostsNatural Infection of Nyssorhynchus darlingi and Nyssorhynchus benarrochi B with Plasmodium during the Dry Season in the Understudied Low-Transmission Setting of Datem del Marañon Province, Amazonian Peru
Conn J, Bickersmith S, Saavedra M, Morales J, Alava F, Rodriguez G, del Aguila Morante C, Tong C, Alvarez-Antonio C, Huanahui J, Vinetz J, Gamboa D. Natural Infection of Nyssorhynchus darlingi and Nyssorhynchus benarrochi B with Plasmodium during the Dry Season in the Understudied Low-Transmission Setting of Datem del Marañon Province, Amazonian Peru. American Journal Of Tropical Medicine And Hygiene 2023, 109: 288-295. PMID: 37364858, PMCID: PMC10397451, DOI: 10.4269/ajtmh.23-0058.Peer-Reviewed Original ResearchConceptsLow transmission settingsAnnual parasite indexEntomological inoculation rateHuman biting rateHuman landing catchesMinistry of HealthMalaria hotspotsInfective bitesPlasmodium vivaxMalaria transmissionLanding catchesPlasmodium falciparumMalaria researchNatural infectionInoculation rateNyssorhynchus darlingiBiting rateRiverine villagesParasite indexBiteVector control unitsDarlingiLoreto DepartmentInfectionVivaxGame over for RSV?
Strine M, Wilen C. Game over for RSV? Science Immunology 2023, 8: eadi8764. PMID: 37276355, PMCID: PMC11528347, DOI: 10.1126/sciimmunol.adi8764.Commentaries, Editorials and Letters
2022
The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2
Townsend JP, Hassler HB, Sah P, Galvani AP, Dornburg A. The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2204336119. PMID: 35858382, PMCID: PMC9351502, DOI: 10.1073/pnas.2204336119.Peer-Reviewed Original ResearchModeling pandemic to endemic patterns of SARS-CoV-2 transmission using parameters estimated from animal model data
Mullin S, Vander Wyk B, Asher JL, Compton SR, Allore HG, Zeiss CJ. Modeling pandemic to endemic patterns of SARS-CoV-2 transmission using parameters estimated from animal model data. PNAS Nexus 2022, 1: pgac096. PMID: 35799833, PMCID: PMC9254158, DOI: 10.1093/pnasnexus/pgac096.Peer-Reviewed Original ResearchSARS-CoV-2 transmissionNatural infectionDuration of immunitySARS-CoV-2 pandemicAnimal model dataEndemic stateHeterologous vaccinationMedian timeCoronaviral diseaseDeterministic compartmental modelNatural immunityLow prevalenceCoronaviral infectionVaccinationViral transmissionInfectionTransmissible variantsImmunityEndemic patternReinfection dataNatural exposureReinfectionEndemic stabilityVariable durationAnimalsModeling of waning immunity after SARS-CoV-2 vaccination and influencing factors
Pérez-Alós L, Armenteros J, Madsen J, Hansen C, Jarlhelt I, Hamm S, Heftdal L, Pries-Heje M, Møller D, Fogh K, Hasselbalch R, Rosbjerg A, Brunak S, Sørensen E, Larsen M, Ostrowski S, Frikke-Schmidt R, Bayarri-Olmos R, Hilsted L, Iversen K, Bundgaard H, Nielsen S, Garred P. Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors. Nature Communications 2022, 13: 1614. PMID: 35347129, PMCID: PMC8960902, DOI: 10.1038/s41467-022-29225-4.Peer-Reviewed Original ResearchConceptsT cell responsesBNT162b2 vaccineAntibody levelsAntibody responseSARS-CoV-2 vaccinationSARS-CoV-2 vaccinesNatural infectionIgG antibody responseGamma interferon releaseChAdOx1-nCoV19First doseIgA responsesIgG levelsVaccine injectionSecond dosePrior infectionVaccineInfectionImmunityCOVID-19Generalized mixed modelDoseTwo-phase responseAgeSex
2021
Modeling SARS-CoV-2 propagation using rat coronavirus-associated shedding and transmission
Zeiss CJ, Asher JL, Vander Wyk B, Allore HG, Compton SR. Modeling SARS-CoV-2 propagation using rat coronavirus-associated shedding and transmission. PLOS ONE 2021, 16: e0260038. PMID: 34813610, PMCID: PMC8610237, DOI: 10.1371/journal.pone.0260038.Peer-Reviewed Original ResearchConceptsViral sheddingSialodacryoadenitis virusSARS-CoV-2Prior natural infectionSARS-CoV-2 propagationSeropositive animalsLow-level sheddingNaive recipient ratsCOVID-19Cycle threshold valuesDirect contact exposureSeroconversion ratesReinfected animalsRecipient ratsImmune protectionHigh riskNaive animalsSusceptible individualsInitial infectionGlobal immunityExposure paradigmRat coronavirusNatural infectionInfectionRatsImmunogenic amino acid motifs and linear epitopes of COVID-19 mRNA vaccines
Wisnewski AV, Redlich CA, Liu J, Kamath K, Abad QA, Smith RF, Fazen L, Santiago R, Luna J, Martinez B, Baum-Jones E, Waitz R, Haynes WA, Shon JC. Immunogenic amino acid motifs and linear epitopes of COVID-19 mRNA vaccines. PLOS ONE 2021, 16: e0252849. PMID: 34499652, PMCID: PMC8428655, DOI: 10.1371/journal.pone.0252849.Peer-Reviewed Original ResearchConceptsCOVID-19 mRNA vaccine recipientsLinear epitopesSARS-CoV-2 neutralizationCOVID-19 mRNA vaccinesVaccine-induced IgGMRNA vaccine recipientsSARS-CoV-2 spike proteinDominant linear epitopeElicit IgGVaccine recipientsVaccine effectivenessMRNA vaccinesVaccination samplesImmune escapeHuman coronavirusesHealthy adultsSARS-CoVVaccine epitopesCritical epitopesAdverse responsesReverse vaccinologySpike proteinNatural infectionS2 subunitIgGAdaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2
Israelow B, Mao T, Klein J, Song E, Menasche B, Omer SB, Iwasaki A. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Science Immunology 2021, 6: eabl4509. PMID: 34623900, PMCID: PMC9047536, DOI: 10.1126/sciimmunol.abl4509.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Viral clearanceImmune determinantsMouse modelSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Cellular adaptive immunitySyndrome coronavirus 2Vivo protective capacityVariants of concernMRNA vaccinationHomologous infectionCellular immunityConvalescent miceCoronavirus 2Antibody responsePrimary infectionEffective vaccineAdaptive immunityConfer protectionInfectionNatural infectionProtective capacityClearance
2018
Changes in IgA Protease Expression Are Conferred by Changes in Genomes during Persistent Infection by Nontypeable Haemophilus influenzae in Chronic Obstructive Pulmonary Disease
Gallo MC, Kirkham C, Eng S, Bebawee RS, Kong Y, Pettigrew MM, Tettelin H, Murphy TF. Changes in IgA Protease Expression Are Conferred by Changes in Genomes during Persistent Infection by Nontypeable Haemophilus influenzae in Chronic Obstructive Pulmonary Disease. Infection And Immunity 2018, 86: 10.1128/iai.00313-18. PMID: 29760213, PMCID: PMC6056860, DOI: 10.1128/iai.00313-18.Peer-Reviewed Original ResearchConceptsChronic obstructive pulmonary diseaseObstructive pulmonary diseasePersistent infectionPulmonary diseaseIgA proteaseProtease expressionNontypeable Haemophilus influenzaeAcute exacerbationLower airwaysRespiratory tractNTHi strainsHaemophilus influenzaeInfectionNTHiNatural infectionHuman pathobiontAltered expressionPatientsDiseasePersistent strainsExpressionCritical roleExacerbationAirwayInitial acquisition
2017
Consecutive inoculations of influenza virus vaccine and poly(I:C) protects mice against homologous and heterologous virus challenge
Moriyama M, Chino S, Ichinohe T. Consecutive inoculations of influenza virus vaccine and poly(I:C) protects mice against homologous and heterologous virus challenge. Vaccine 2017, 35: 1001-1007. PMID: 28111142, DOI: 10.1016/j.vaccine.2017.01.025.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicAdministration, IntranasalAnimalsAntibodies, ViralCross ProtectionFemaleFormaldehydeImmunity, MucosalImmunization ScheduleImmunoglobulin AImmunoglobulin GInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H3N2 SubtypeInfluenza VaccinesMiceMice, Inbred BALB COrthomyxoviridae InfectionsPoly I-CSurvival AnalysisVaccines, InactivatedConceptsInfluenza virus vaccinePrimary immune responseVirus vaccineIntranasal vaccinationVirus challengeImmune responseInactivated influenza virus vaccineInfluenza virusHeterologous influenza virus challengeVirus-specific IgAInfluenza virus challengeHeterologous virus challengeNatural infectionSerum IgG responsesConsecutive inoculationsSingle intranasal vaccinationCross-protective activityNasal IgANasal washesIgG responsesMucosal immunitySystemic immunityVaccinationNaïve animalsVaccine
2015
Limits and patterns of cytomegalovirus genomic diversity in humans
Renzette N, Pokalyuk C, Gibson L, Bhattacharjee B, Schleiss M, Hamprecht K, Yamamoto A, Mussi-Pinhata M, Britt W, Jensen J, Kowalik T. Limits and patterns of cytomegalovirus genomic diversity in humans. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: e4120-e4128. PMID: 26150505, PMCID: PMC4522815, DOI: 10.1073/pnas.1501880112.Peer-Reviewed Original ResearchConceptsGenomic diversityHuman hostGenome-wide mutationsHuman cytomegalovirusRecombination rate mapsHCMV populationsViral genomic diversityGenome beingRegulatory proteinsViral populationsDiversityPolymorphismHostPatient samplesDiverse regionsGenomeNatural infectionLociCongenitally infected infantsGenesMutationsProteinInfected infantsGlycoproteinRecombinationFirst report of Warileya rotundipennis (Psychodidae: Phlebotominae) naturally infected with Leishmania (Viannia) in a focus of cutaneous leishmaniasis in Colombia
Moreno M, Ferro C, Rosales-Chilama M, Rubiano L, Delgado M, Cossio A, Gómez MA, Ocampo C, Saravia NG. First report of Warileya rotundipennis (Psychodidae: Phlebotominae) naturally infected with Leishmania (Viannia) in a focus of cutaneous leishmaniasis in Colombia. Acta Tropica 2015, 148: 191-196. PMID: 25917717, PMCID: PMC4654406, DOI: 10.1016/j.actatropica.2015.04.017.Peer-Reviewed Original Research
2013
Plasmodium falciparum Merozoite Surface Antigen, PfRH5, Elicits Detectable Levels of Invasion-Inhibiting Antibodies in Humans
Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S, Harrison SC, Duraisingh MT. Plasmodium falciparum Merozoite Surface Antigen, PfRH5, Elicits Detectable Levels of Invasion-Inhibiting Antibodies in Humans. The Journal Of Infectious Diseases 2013, 208: 1679-1687. PMID: 23904294, PMCID: PMC3805239, DOI: 10.1093/infdis/jit385.Peer-Reviewed Original ResearchConceptsMerozoite surface antigenSurface antigenPlasmodium falciparum merozoite surface antigenMulti-subunit vaccineMillions of infectionsIntracellular protozoan parasiteInvasion inhibition assaysSubstantial morbidityClinical isolatesP. falciparumBlood stagesPlasmodium falciparumNatural infectionAntibodiesPfRH5Protozoan parasiteDetectable levelsInhibition assaysInfectionAntigenFalciparumRecombinant formMorbidityLaboratory strainsVaccine
2012
Understanding Reduced Rotavirus Vaccine Efficacy in Low Socio-Economic Settings
Lopman BA, Pitzer VE, Sarkar R, Gladstone B, Patel M, Glasser J, Gambhir M, Atchison C, Grenfell BT, Edmunds WJ, Kang G, Parashar UD. Understanding Reduced Rotavirus Vaccine Efficacy in Low Socio-Economic Settings. PLOS ONE 2012, 7: e41720. PMID: 22879893, PMCID: PMC3412858, DOI: 10.1371/journal.pone.0041720.Peer-Reviewed Original ResearchConceptsLow socio-economic settingRotavirus vaccine efficacyVaccine efficacyRotavirus vaccineSevere diseaseNatural infectionImmunogenicity of vaccinationReduced vaccine efficacySevere rotavirus gastroenteritisReduced efficacyClinical trial resultsLow SES populationsRotavirus gastroenteritisVaccine performanceVaccination programImmune responseEpidemiological factorsVaccineVaccinationTrial resultsInfectionSES populationsEfficacyReduced protectionEfficacy declinesAnalysis of Plasmodium falciparum diversity in natural infections by deep sequencing
Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, O’Brien J, Djimde A, Doumbo O, Zongo I, Ouedraogo J, Michon P, Mueller I, Siba P, Nzila A, Borrmann S, Kiara S, Marsh K, Jiang H, Su X, Amaratunga C, Fairhurst R, Socheat D, Nosten F, Imwong M, White N, Sanders M, Anastasi E, Alcock D, Drury E, Oyola S, Quail M, Turner D, Ruano-Rubio V, Jyothi D, Amenga-Etego L, Hubbart C, Jeffreys A, Rowlands K, Sutherland C, Roper C, Mangano V, Modiano D, Tan J, Ferdig M, Amambua-Ngwa A, Conway D, Takala-Harrison S, Plowe C, Rayner J, Rockett K, Clark T, Newbold C, Berriman M, MacInnis B, Kwiatkowski D. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature 2012, 487: 375-379. PMID: 22722859, PMCID: PMC3738909, DOI: 10.1038/nature11174.Peer-Reviewed Original Research
2008
Innate sensors of influenza virus: clues to developing better intranasal vaccines
Ichinohe T, Iwasaki A, Hasegawa H. Innate sensors of influenza virus: clues to developing better intranasal vaccines. Expert Review Of Vaccines 2008, 7: 1435-1445. PMID: 18980544, PMCID: PMC2724183, DOI: 10.1586/14760584.7.9.1435.Peer-Reviewed Original ResearchConceptsInfluenza vaccineInnate sensorsVirus infectionImmune systemInfluenza virusIntranasal influenza vaccineVariant virus infectionNatural infectionEffective influenza vaccinesInfluenza virus infectionToll-like receptorsRetinoic acid-inducible geneNOD-like receptorsInnate immune systemPattern recognition receptorsAdaptive immune systemAcid-inducible geneParenteral immunizationIntranasal vaccineMucosal immunitySystemic immunityInactivated vaccinesRespiratory tractAdaptive immunityLike receptors
2004
Tick Saliva Reduces Adherence and Area of Human Neutrophils
Montgomery RR, Lusitani D, de Boisfleury Chevance A, Malawista SE. Tick Saliva Reduces Adherence and Area of Human Neutrophils. Infection And Immunity 2004, 72: 2989-2994. PMID: 15102811, PMCID: PMC387908, DOI: 10.1128/iai.72.5.2989-2994.2004.Peer-Reviewed Original Research
2002
Human phagocytic cells in the early innate immune response to Borrelia burgdorferi
Montgomery RR, Lusitani D, de Boisfleury Chevance A, Malawista SE. Human phagocytic cells in the early innate immune response to Borrelia burgdorferi. The Journal Of Infectious Diseases 2002, 185: 1773-1779. PMID: 12085324, DOI: 10.1086/340826.Peer-Reviewed Original ResearchConceptsPolymorphonuclear leukocytesImmune responseEarly innate immune responseKilling of spirochetesSpecific antibodiesBorrelia burgdorferiSecondary immune responseInnate immune responseInnate immune systemHuman phagocytic cellsSpirochete clearanceMononuclear cellsImmune systemLyme diseasePhagocytic cellsNatural infectionMature macrophagesSpirochetesIntracellular colocalizationAntibodiesBurgdorferiFirst cellsLimited uptakeCellsMonocytes
2001
Reactivity of dog sera to whole-cell or recombinant antigens of Borrelia burgdorferi by ELISA and immunoblot analysis
Magnarelli LA, Levy SA, Ijdo JW, Wu C, Padula SJ, Fikrig E. Reactivity of dog sera to whole-cell or recombinant antigens of Borrelia burgdorferi by ELISA and immunoblot analysis. Journal Of Medical Microbiology 2001, 50: 889-895. PMID: 11599738, DOI: 10.1099/0022-1317-50-10-889.Peer-Reviewed Original ResearchConceptsEnzyme-linked immunosorbent assayWhole cell antigenRecombinant antigensB. burgdorferiNon-vaccinated dogsPolyvalent enzyme-linked immunosorbent assaysCanine borreliosisTick-infested areasTotal immunoglobulinWhole-cell B. burgdorferiAntibody titresBorrelia burgdorferi sensu strictoVaccinated dogsJoint disordersImmune responseBurgdorferi sensu strictoAntigenImmunosorbent assaySerumDogsNatural infection
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply